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(ii) resonance-enhancement factors, and (iii) line
broadening®? in the case of impurity scattering,
which is expected to be discernible in an experi-
ment.

ONE-PHONON...

3685

ACKNOWLEDGMENTS
The author is indebted to E. O. Kane, T. C.
Damen, J. F. Scott, P. J. Colwell, M. V. Klein,
and P. Lawaetz for many helpful discussions.

*Present address: Xerox Palo Alto Research Center,
3180 Porter Drive, Palo Alto, Calif. 94304.

3. F. Scott, R. C. C. Leite, and T. C. Damen, Phys.
Rev. 188, 1285 (1969), and earlier references given there-
in.

M. P. Fontana and E. Mullazzi, Phys. Rev. Letiers
25, 1102 (1970).

3y, M. Ralston, R. L. Wadsack, and R. K. Chang,
Phys. Rev. Letters 25, 814 (1970).

4R. M. Martin and T. C. Damen, Phys. Rev. Letters
26, 86 (1971).

SR. Loudon, J. Phys. (Paris) 26, 677 (1965).

A. K. Ganguly and J. L. Birman, Phys. Rev. 162,
806 (1967).

'E. Mulazzi, Phys. Rev. Letters 25, 228 (1970).

8D. L. Mills and E. Burstein, Phys. Rev. 188, 1465
(1969).

9B. Bendow and J. L. Birman, Phys. Rev. B1, 1678
(1970); B. Bendow et al., Opt. Commun. 1, 267 (1970).

103, 3. Sein, thesis (New York University, 1969). (un-
published).

Up, c. Hamilton, Phys. Rev. 188, 1221 (1969).

2y, Toyozawa, Progr. Theoret. Phys. (Kyoto) 20, 53
(1958).

133, J. Hopfield, Phys. Rev. 112, 1555 (1958).

4y, Toyozawa and J. Hermanson, Phys. Rev. Letters
21, 1637 (1968).

15B. Segall and G. D. Mahan, Phys. Rev. 171, 935
(1968).

165, J. Hopfield, J. Phys. Chem. Solids 10, 110 (1959).

TR, Loudon, Advan. Phys. 13, 423 (1964).

8H. Gobrecht and A. Bartschat, Z. Physik 156, 131
(1959).

R, S. Knox, Theory of Excitons, Suppl. No. 5 of
Solid State Physics (Academic, New York, 1963).

%G, L. Bir and G. E. Pikus, Fiz. Tverd. Tela. 2,
2287 (1960) [Sov. Phys. Solid State 2, 2039 (1961)].

1., Hostler, J. Math. Phys. 5, 591 (1964); L. Hostler
and R. H. Pratt, Phys. Rev. Letters 10, 469 (1963).

2F, T. Whittaker and C. N. Watson, A Course in
Modern Analysis (Cambridge U.P., London, 1963).

%D. G. Thomas and J. J. Hopfield, Phys. Rev. 128,
2135 (1962).

%C. A. Arguello, D. L. Rousseau, and S. P. S. Porto,
Phys. Rev. 191, 1351 (1969).

Bp, J. Colwell and M. V. Klein, Solid State Commun.
8, 2095 (1970).

%M. L. Williams and J. Smit, Solid State Commun. 8,
2009 (1970).

%D, C. Reynolds, C. W. Litton, T. C. Collins, and
E. N. Frank, Tenth International Confevence on the Phys-
ics of Semiconductors, edited by S. P. Keller, J. C.
Hensel, and F. Stern (U.S. AEC, Oak Ridge, Tenn.,
1970), p. 519.

PHYSICAL REVIEW B

VOLUME 4,

NUMBER 10 15 NOVEMBER 1971

Effect of Electronic Polarization on States of Localized
Electrons in Insulators™®

Shao-fu Wang, Harbans L. Arora, and Mitsuru Matsuura
Department of Physics, University of Watevloo, Watevloo, Ontario, Canada
(Received 11 February 1971)

Starting from the electronic-polaron theory we derive an expression for the interaction be-
tween a localized electron and a massive hole via the polarization field for all electron-hole
separations. The form of this interaction remains unchanged even when both electron and

hole masses are effectively infinite.

The expression obtained is compared with the corre-

sponding expression in the Haken-Schottky (HS) theory. Also expressions for polaron effects
such as self-energy, mass correction, and Lamb-shift-type corrections are derived in second-
order perturbation theory. Owing to the complete analogy between the electron and lattice
polarons, our results are also applicable to the case of a bound lattice polaron. Our results
are then compared with those of other authors for a bound lattice polaron.

I. INTRODUCTION

From recent work such as those of Refs. 1-3,
it is seen that in studying quantum states of a lo-
calized electron in insulators, the electronic po-
larization plays a significant role and considerably
affects not only the positions of the electronic ener-
gy levels but also the transition energies. In the

above references, the treatment of electronic-po-
larization effects on the system under consideration
is based on the electronic-polaron theory of Toyo-
zawa* and Haken and Schottky® (T-HS). This theory
is an analog of the usual lattice-polaron theory and
can be used to study not only the effective potential
of a source particle but also the polaron effects
(such as self-energy, mass correction, and Lamb-
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shift-type corrections) due to the electronic-polar-
ization field.

On the one hand, starting from the T-HS theory,
the effective Hamiltonian, which includes the elec-
tronic-polarization field, is obtained in Ref. 2 by
the Hartree-type self-consistent-field method.

This method is appropriate for deeply localized
electronic states but is not adequate for intermedi-
ate electron-hole separations. On the other hand,
in Refs. 1 and 3, the expression for the electronic-
polarization potential is obtained by adopting the
Haken-Schottky (HS) result, > which is derived for
large-radius Wannier excitons, i.e., for states of
large electron-hole separations, from the elec-
tronic-polaron theory of T-HS.

In this paper, we adopt the T-HS theory for the
electronic-polarization field and employ a different
approach to derive the effective interaction between
a localized electron and a massive hole (effectively
of infinite mass; for simplicity, we shall call it
just “hole” in this work) for all electron-hole sep-
arations. We examine the consequences of this in-
teraction and the resultant polaron effects.

In Sec. II, we derive an analytic expression which
takes into account the effect of the electronic po-
larization on the interaction between a localized
electron and a hole. This result is then used to ob-
tain expressions for the polaron effects on the lo-
calized electron. Owing to the complete analogy
between the electronic- and lattice-polaron theories
these results can also be applied to the case of a
bound lattice polaron, by making formal substitu-
tions for the appropriate physical quantities in-
volved. However, the results for polaron effects
can be applied only to the case when a single phonon
energy is greater than the binding energy of the
localized electron. In Sec. III, the expressions ob-
tained in Sec. II are further studied in both nonband-
mass theory and the band-mass approximation.
Then the obtained results are compared with those
of HS and other authors.®” Finally, in Sec. IV a
summary of the work is given.

II. THEORY

A. Formulation

In the absence of ionic polarization, the Ham-
iltonian of a system consisting of an electron and
a massive hole located at an ion site (such as a
localized exciton or an F center) in a perfect in-
sulator may be written as

H=H,-V(|T-R|)+% (%, R, [b3)) , @
with

P 5 v(E_R
e':é;;'l'zla V(r _RaO) ) . (2)

1=(F, R,[0g) = 0305 0gEer+ L5 (Vabge ¥ +e.c.)
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-22z(v, b;;e“;“i+c. c.), (3)

where the p, m, and T are, respectively, the mo-
mentum, the free-electron mass, and the position
vector of the (localized) electron. V(T -R,q) is
the interaction of the electron with the ath ion (or
atom) at R, when the ath ion is at its equilibrium
position and its core and valence electrons are in
the ground state. Thus the last term of Eq. (2) is
the interaction of the electron with all ions making
up the ideal insulator. The term - V(IT -R|) in
Eq. (1) is the attractive interaction between the bare
electron and the hole at R, which is a Coulombic
potential for large electron-hole separations. The
Hamiltonian given by Eq. (3) was first derived by
Toyozawa, * by considering the virtual excitation of
crystalline valence electrons (these excitations are
believed to be responsible for the electronic po-
larization) as a virtual exciton (approximately a -
boson), to describe the electronic-polarization field
in the crystal and the interaction of this field with
the source particles, i.e., the electron and the
hole. Later, the same Hamiltonian [Eq. (3)] was
also derived and justified by Haken and Schottky®
from many-body considerations of the excitons. In
this context [b3] represents all coordinates of the
virtual excitons, E, is the energy of a longitudinal
exciton and is approximated to be independent of
was in Ref. 4, by and b,{- are, respectively, an-
nihilation and creation operators for a longitudinal
virtual exciton of wave vector W, and V, is given
by the standard expression

[ 2neE, 1\]%/2
Vw“l[—m*(l-?)] ’ )

where @ is the volume of the crystal under consid-
eration.
We now introduce a new operator given by

Bg=bz-V% e ¥R/E )

For the system considered here, since R is con-
stant, the commutation relations [bz, R]=0 and
[6,R]=0 hold. Accordingly the new operator By
and its complex conjugate, i.e., BL, satisfy the
commutation relations for boson operators. Thus
B can be defined as an annihilation operator for
bosons of wave vector w by Bi10)=0, where |0)
is the corresponding vacuum state. With the aid
of the operators By and BI;,, the above H can be
transformed to

: L.
H=H,-V(|]T-R|)+2 Wyl (ef™ EF)ic.c.)
w ex

1V, 12
-2 —Eﬂ—+2;3§, Bz E.,
w ex

+2(V,Bz etV ic.c), (6)
w
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without a change in the eigenvalues. The fifth term
in (6) is the Hamiltonian of the virtual excitons
characterized by B, i.e., the modified excitons,
and the last term is the interaction between these
virtual excitons and the trapped electron. The
meaning of the third and fourth terms will be dis-
cussed later.

Taking the last term in (6) as a perturbation, we
obtain (from the Schrodinger equation for the un-
perturbed system)

H, an(.{‘)= €, l[),,( F) (7a)
and

Z;\VB!J, Bv'; Eex‘nw>=€ex‘nw> ’ (7b)
where |n,)=1n, ny+++) is an eigenfunction of the
exciton system and €., is the corresponding eigen-
value. The 3,’s and €,’s are, respectively, eigen-
functions and eigenvalues of the electronic Hamilto-
nian H, where H, is given by

2
Hy=H,-V(|T -R|)+2 1Vyl” G I
0" e s E
w

ex
(8)
The fourth term of Eq. (6), which will be shown to
be the self-energy of the hole due to its own po-

larization field, is a constant and is omitted here-
after. Thus the energy of the unperturbed state

a(T)Im,) is €,+3 3 ng Eoy, Where n, is the number

of modified virtual excitons with energy E,,. Let
us start with the unperturbed state ¥,(¥)|0) in which
there is a trapped electron and no excitons are
present. The perturbation operating on this unper-
turbed state produces all states with one exciton
present in the field. Therefore, the matrix ele-
ment involved in first-order energy vanishes, and
there is no first-order perturbation of the energy
level of the electron. In second order, however,
the matrix elements, for which the final state has
one exciton, are nonvanishing and we get

s 1V,1% 0,2
AE. = — 2w Pam! 9
En v%m €t Eox— €, ’ ( )
where

Pam=J U5 () pu(F) ¥ F aT
and m is summed over all electronic states. Equa-
tion (9) is analogous to that derived by Bethe for the
self-energy of an electron in a stationary state of
hydrogen, due to its interaction with virtual pho-
tons. ® Hence the AE, [Eq. (9)] is the electron self-
energy due to its interaction with virtual excitons.

B. Further Physical Interpretations

To understand the physical meaning of the fourth
term in Eq. (6), consider first Eq. (9) and the high-
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er-order perturbation corrections to the total en-
ergy for the case in which the electronic transition
energy le, —¢,| (for which the corresponding |p,,!
is significantly different from zero) is very much
less than the exciton energy E,, (order of the first
exciton peak). Thus l€, —¢,| can be neglected
compared to E,,. In this case, since Z,,,Ip,,,,,la= 1,
the above AE, reduces to

— V.2
Efe)=-3 1l (10)
w ex

the electron self-energy. Further all the higher
odd-order corrections are zero as in the case of
the first-order correction. As for the higher even-
order corrections first consider the fourth-order
correction. It follows from the conclusion drawn
in Ref. 9 that if | ¢, —¢,l, for which |p,,| is far
from zero, is very much less than E,,, the fourth
term is identically zero. We then expect, in this
limit, the sixth and higher even orders to contribute
zero, and thus E (e) given by Eq. (10) is exact in
this limit., Now compare the fourth term of Eq.

(6) with E (e). Both have the same form, and hence
the former is the self-energy of the hole due to its
own electronic-polarization field. Note that this
self-energy of the hole is obtained by employing an
exact canonical transformation, considering it as

a source particle of infinite mass, i.e., effectively
static with respect to virtual excitons. Thus an
expression like the fourth term of Eq. (6) is exactly
the self-energy of a source particle in the static
approximation (this approximation is the opposite
extreme to the adiabatic approximation used in the
literature for the electron-phonon interaction). It
follows then that E(e) is also the self-energy of the
electron in the static approximation and that a
criterion for the validity of the static approximation
is that the | ¢, -€,|, for which the corresponding
|Pym! is large, should be much less than E,,. This
is consistent with what one has expected.

It is seen from the derivation of Eq. (10) that
when | ¢, - €,], for which lp,,| is significantly dif-
ferent from zero, is considerably less than the ex-
citon energy E,,, the higher-order perturbation
corrections are very small compared to the sec-
ond-order energy correction given by Eq. (9).
Therefore the second-order perturbation theory is
sufficient in calculating a correction to the total en-
ergy of a localized electron, described by a Ham-
iltonian like that given by Eq. (6), when its ground
state is closer to the conduction band than to the
valence band. In the following we shall limit our-
selves to this case.

The interpretation of the fourth term of Eq. (6)
as the self-energy of a massive hole dressed with
virtual excitons has its analogy in the meson the-
ory of nuclear forces. Then, following the inter-
pretation given in the meson theory for a term an-
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alogous to the third term in Eq. (6), we interpret
this term, i.e.,
v Iz iwe @-ﬁ)
Ve=21 —2— (e +c.c.),
w

11a
Eo (11a)

as the interaction between the electron and the hole
via the electronic-polarization field. This interac-
tion is due to the exchange of virtual excitons be-
tween the electron and the hole. Hereafter let us
call this interaction the exchange interaction.
Replacing the summation over the wave vector
w in Eq. (11a) by an integration with respect to this
vector over the first Brillouin zone, as is the usual
procedure, we obtain

_ 1 2 g [remtR siny
V°—<1—€w) IT -R| 77,/(; M au,

where p=wl|T -R| and w,, is the maximum value
of Iwl. w, is approximately r/d for alkali halides
with NaCl structure, where d is the nearest-neigh-
bor distance. When the electron-hole separation
IT =R/ is very much larger than d, V, reduces to
(1-1/€.)e?/IT -R| because of the decreasing na-
ture of the integrand with increasing IT -R|. In
this case the second term in Eq. (8) becomes a
Coulombic potential and hence Eq. (8) reduces to

(11b)

Hy=H,-e?/c.|T -R| .

This means that the exchange interaction is nothing
but the dielectric screening interaction. This in-
teraction reduces the electron-hole interaction
“_V(IT -R1)”inEq. (8) and, thereby, the magnitudes
of €, and €, so that | €, —€,| becomes much less
than E,,. Therefore, as noted above on the use of
perturbation theory for this problem, the perturba-
tion series will be much more rapidly convergent
using the transformed Hamiltonian rather than the
original Hamiltonian.

We note that the exchange interaction obtained
here can be applied to an electron-hole pair of
arbitrary separation so long as ¥¢ expressed by Eq.
(3) exists. This is because no limitation for |T - R|
is included in making the canonical transformation.
For the case of large electron-hole separations,
the exchange interaction merely introduces the usu-
al high-frequency dielectric constant €. into the
electron-hole interaction in Eq. (8) as discussed
above. Thus the eigenfunctions of H, [Eq. (8)] and

those of the Hamiltonian equal to the sum of the
first two terms in this equation are functionally the
same, differing only in the eigenvalues. Whereas
for intermediate and small separations, the ex-
change interaction introduces the r-dependent di-
electric constant into the electron-hole interaction.
Consequently, the unperturbed states become com-
plicated compared to those in the case of large sep-
arations. Now, however, the transformation to

AND MATSUURA 4

H, [Eq. (8)] places us predominantly in the region
of large separations thus simplifying the problem
(see Sec. IIC for details).

The exchange interaction will be further discussed
and compared with the corresponding HS expression
in Sec. IIL

C. Evaluation of AE,

In the theory of a bound lattice polaron, attempts
have been made to evaluate an equation like Eq.
(9).%" In this work we shall use a different ap-
proach so that AE, can be evaluated more accurate-
ly than by the methods used in these references.

We can rewrite Eq. (9) in the form

)

AE,=-2] | lez<n et 7 1
w J
(12)

ext H 0~ €y,
for the state In) under consideration. If we use
the formal expansion, this can be written as

- -
e-{w-r

o« 2
AE,== 3 (~1*Y] 1V,1°
k=0 w E o
e;w(iu&)” i E
ex

W)

(13)

Using the relation

= % - A4 - -
etV rpze iw r=(p_ﬁw)2 ,

we get
had " | V,12
AB,=- 2, (-1, —4—
k=0 % Eex
< <n (ﬁzwz/Zm—ﬁW~§/m+Ho—€,,)” n>
Eox
(14)
or

n%w? hAw.p -1
(Eex+z—m-7+”°-‘n)

(15)

We can proceed further by an expansion to get

8By % LVl
nT G Eo+Hwt/2m
")

WD /m+ €, —H, -
><<n [1_( Eo +1°w"/2m Q)]
(16)

= i Jy 1)




v

where

o I;g’l:/zm<”|(W'B/m+€"’f’°>j
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3 Eoy+7°uw"/2m
(18)
For the cases j=0, 1,
) |V, 1%
J°“§ Eo +H°w®/2m ’ (19)
_ 1V,12 WDl \_
T Ty <n ny=0. (20)
]
~ | V2 iw-p <nw.p
i Z (E,x+h’z1,vz/2m)4 <n m m

_ | V12 "
T (Eox+7°w’/2m)

L7
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For the case of j22, we can use the expression

v, |2
J:—
=X G

WD
o+ 7w/ 2m) T

WD 12 mwep
><-<——m—+€,,-H0> _%_p. n> (21)

Then using the eigenvalue equation for Hy, i.e
Hyln)=¢,ln), we can get the expression for arbi-
trary J,(j22), in principle. For example,

T

- -

Ak

[a (B Y BB o) ZEB] |

(23)
- i (B 252 )
e o 5 ) 22
-5 i () (0. 28] )

where v(T) is the potential-energy term in H, and
is given by

2 - -
(D)= V(F-Rap) - V(D +5 Lal (¥4, ¢ c.)

w ex

(25)

o3 |V|2 1V, 12

choosing the origin of all vectors to be at the center
of the hole. The higher-order expressions have
more complicated forms but can be obtained
straightforwardly.

If we retain terms up to the order (E l’/E,,{)z
where Ef, is the binding energy of the nth state,
we get from the above results

T Eo+h wa/2m

% G mw Sy (n l(hw BY|»

e

Replacing the summation over W by an integration

with respect to this vector in the first Brillouin
zone, we obtain

1
AEn= - alEex _%- aZEexAn+TZ' a3EexBn -Z% a4Eex Cn ’

(27)
where

= sN\e s s
[v(;)<h’v:n p) AR o(3) EweD

— |V, 12
'25’ (B + 1w’ /2m)"

(ﬁw.ﬁ)‘*
m

" L&

|V, 1|
E oy T%Z/Zm)s <

n> . (26)

1
An=2_”',lf; (n|p?|n),

1 - ey >
B,=g——7 (n|(pv(¥))-B|n) ,

2 <"|P4l”>

(2mE (28)
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aﬁ%rq' tan"lu | (292)
_ _2_52_ - 2u u -1 )
ap== ((1+u) +-i—_;—z;§+tan u), (29b)
o _2_a( - 8u + 2u R +tan'lzi>
3T \3(1+u®)® T 31+ T 14+u” .2
(29¢)
and
32¢ ub
@g= =5~ mﬂxs , (29d)
u being
u=(n2/2mE )" 2w, . (30)

w,, is the maximum value of |w/| in the first Bril-
louin zone and «a is

e EHE W

The «,’s in Egs. (29) reduce to a when w,, is re-
placed by infinity., This approximation is reason-
able only when the integrand of the W integral de-
creases very rapidly as Iw| increases for given
E,, and m.

In Eq. (27), the first term represents the usual
self-energy of the electron due to electronic po-
larization, the second term is nothing but the mass
correction, and the third and fourth terms are the
so-called Lamb-shift-type corrections. The mag-
nitude of these polaron effects depends on the cou-
pling constant «, the electronic mass m, the ex-
citon energy E,,, and the form of the potential
v(T) (see Sec. II for details).

We note that in the above calculation the |»n) was
treated as an eigenfunction of Hj only and thus the
above results are not only applicable in the non-
band-mass theory but also in the band-mass ap-
proximation [i.e., p%/2m +3q V(T =Rqo) ~ p%/2m,,
where m, is the electronic band mass] if the free
electron mass m is replaced by m,. When the
band-mass approximation holds for a trapped elec-
tron, the electron-hole separation is usually large
and the exchange interaction given by Eq. (11) be-
comes (1 -1/¢.)e?/IT -RI. Consequently, H,
[expressed by Eq. (8)] reduces to

Ho=p*/2m, - %/ |T -R]| . . (32)

This is a hydrogenic Hamiltonian and its eigen-
functions |xz) are hydrogenlike.

When the band-mass approximation is not ap-
plicable, however, the electron-hole separation
is usually not so large that the Hy, becomes hydro-
genic. The corresponding eigenfunctions are thus
complicated even if one ignores the exchange inter-

AND MATSUURA 4

action in Hy. In this case, as in the semicontinuum

" calculation of the F center, 2 the hydrogenic wave

functions may be chosen as the trial wave functions
in a variational calculation to obtain numerical
values of the total energy including the correction
AE,.

As a further comment we see that, because of
the complete analogy between the electronic polaron
and the lattice polaron, the exchange interaction
and AE, for a bound lattice polaron are given by
Egs. (11) and (27), respectively, with E,,~ iw and
(1-1/€.)~ (1/€. ~1/€,), where €, is the static di-
electric constant and w is the frequency of a longi-
tudinal optical phonon of wave vector w. The ex-
change interaction thus obtained is applicable in
both cases of w,> w and w,<w, where w, is the fre-
quency of the trapped electron. However, note
that AE, obtained in this way is valid only for w,
<w, i.e., the weak coupling case.

III. DISCUSSION OF RESULTS AND COMPARISON
WITH OTHER CALCULATIONS

In this section we proceed to examine and com-

" pare the results of Sec. II, i.e., polaron effects and

the exchange interaction in relation to other cal-
culations in the literature. We discuss polaron ef-
fects, given by Eq. (27), in Sec. III A and the ex-
change interaction, given by Eq. (11), in Sec. III B,

A. Polaron Effects

First consider the case of shallow electronic
states within the band-mass approximation. In this
case, as discussed in Sec. IIC, the unperturbed
Hamiltonian Hj is hydrogenic and the unperturbed
states are hydrogenlike so that the second-order
energy corrections to the 1s-,2s-, and 2p-like hy-
drogenic states, according to Eq. (27), are

AE =~ 015 Eoy "%_ Qgp Eox (E ?.s/Eex)

+(F as~F 0) E (EY/Eo (332)
AE3s= — a1y Eox —F U2y By (E3/E,,)

+ (i% Qgp — i% Qqp) Eq, (E gs/Eex)a s (33b)
AEpy=— 01, Epy = 03 Egy (E3,/E,y)

+(0 =75 agy) Ex (E3/Eor)? (33c)

where E ] is the magnitude of the energy of the usual
hydrogenic levels measured from the bottom of the
conduction band, that is,

El=m,e*/23h%, E3,=E}=mye'/8& 0%,
(34)

and the a,,’s are those given by Eq. (29) with the
electronic mass m replaced by the band mass m,.
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The first term of Eqs. (33) is the constant energy
shift due to electronic polarization and is the same
for all electronic states. This corresponds to the
energy shift in the usual lattice polaron theory.
However, the magnitude of this shift is different
because of the different values of o, and E,,. The
second term arising from —% a, E,, 4, in Eq. (27)
gives the mass correction and has a form similar
to that in the weak-coupling theory of lattice polar-
on. The last term in each of the Eqs. (33) is the
Lamb-shift-type correction, which is a function of
the state in question. The first and second terms
in the bracket of this last term arise from fra,
XE,,B, and #a,4E,,C, in Eq. (27), respectively.

The corresponding expression for a bound lattice
polaron, obtained from the present results by mak-
ing formal replacements, differs from those given
in Refs. 6 and 7. In Ref. 6, only the term corre-
sponding to f ay, E,, B, of Eq. (27) exists and the
term corresponding to —5a,, E,, C, does not ap-
pear. This is because in Ref. 6, the expansion of
the second-order energy correction was truncated
excluding the terms of the order (p%/2m)?. The net
result of this is that Lamb-shift-type correction is
opposite in sign to that in Ref. 6 and smaller than
it in magnitude.

On the other hand, Ref. 7 includes terms like
— 3504 Eo C,, butexcludes (Fas, E o B,)-like terms,
which include the potential v(T). This is due to an
approximation used in this reference, i.e., setting
[F, Hy)=[F, p®/2m,), where Hy=p?/2m, - e*/c v, and
F is an operator satysfying the following equation:

|
0% a, B0 A
_— L =3 ’
AEls (031 Eex 6 Q2 2m + 6 2m Eexzi—l z;e
T
127

Here ) is the parameter involved in 1s wave func-
tion Py,=(3/m)2e™, d, is the distance of the ith
ion from the center of the trap, z; is the charge on
the ¢th ion, and the prime on the sum in the third
term implies summation over all ions except the
trap. The x involved in the fourth term is equal to
w,/2\. We note that a,’s in the above equation are
those given by Egs. (29) in the nonband-mass theory
and that the mass m involved in the expression for
a, Eq. (31), is the free-electron mass. This value
of a is different from that of @, and for a given
crystal a= (m/m,)/? @,. Thus the first two terms,
which give, respectively, the energy shift and the
mass correction in the nonband-mass theory, are
a3/ay, and ay/a,, times the corresponding values
in the band-mass approximation, respectively.
Combining the second term with the kinetic energy
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([F, Hy] - hwF)|n) = e";";| n).

If we make an equivalent approximation, our re-
sults reduce to those of Ref. 7, and thus lead to an
overestimation of the Lamb-shift correction for s
states.

It is instructive to compare our Lamb-shift cor-
rection with that due to the photon field in the hy-
drogen atom.® It is seen that only the term 11"2'063
X EeB, is analogous to the Lamb shift in the hydro-
gen atom. Inthe problem of Lamb shiftin hydrogen,
as the momentum of the photon is small compared
with the electron momentum, the contribution to
the kinetic-energy term by the photon momentum
can be neglected. Thus there is no correction like
~-#ay E, C, term. In our problem, this contribu-
tion is not negligible. In the case of oy, ~a,,, this
contribution is larger than the usual Lamb-shift-
type corrections for 1s, 2s, and 2p states, and the
energy of the 2s state is lower than that of the 2p
state contrary to the result of the Lamb-shift in
hydrogen atom [cf. Eqgs. (33b) and (33c)].

Second, we estimate the corrections represented
by Eq. (27) for a deeper state in the nonband-mass
theory and compare these with those discussed
above in the band-mass approximation. The evalu-
ation of B, for any given electronic state is very
complicated. For the sake of simplicity, we con-
sider an F-center-like electron and approximate its
ground state by a hydrogenlike 1s wave function.
Then, for the potential v(T) given by Eq. (25), the
AEj, in the nonband-mass theory is worked out to be

-Z)Ldt

702 e 1 x Fa, (72%/2m)?
2m  Eqy (tan x_1+x7) - E,, - (35)
[
(1s|p?/2m|1s)=1*2%/2m
gives the electronic-polaron mass
m*=m/(1 -}ay) . (36)

For typical alkali halide crystals such as NaCl and
KCl, m ~2m,, Ey,~8¢€V, €.~2, w,~7/d=~1(d
is the nearest-neighbor distance), and ay ~0. 84a,,,
where ay, is of the order of 0.3. Thus the effect
of the electronic polarization on the electronic
mass, and thereby on the kinetic energy, is small.
The third and fourth terms in Eq. (35) arise from
the third term, and the last term comes from the
last term in the expansion of AE,, Eq. (27). These
three terms contribute to the Lamb-shift correc-
tion. For typical alkali halide crystals, a3=0.5q,
a4~0.25a, and the sum of these corrections is
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about “~ 0. 02 eV” for A=0.7 A™ and “0. 002 eV” for
A=0.4 A, These values are small as compared
with the optical absorption and emission energies
due to point defects.

B. Exchange Interaction

It is interesting to note that the exchange inter-
action obtained in Sec. II, i.e., Eq. (11), is exactly
the same as that obtained when both the electron
and hole masses are effectively infinite (equivalent-
ly, the frequencies of the electron and hole are much
less than the frequency of the polarization field,

i.e., the static approximation). Indeed, in the stat-
ic limit, Eq. (1) becomes

-

H=2, V& =Ry - V(|T -R|)+%. (37
We introduce the operator
V* e-iﬁ'-ﬁ V* e-iw‘r
By=bg——2 R . (38)
oo Eoy Eoy

This operator and its Hermitian conjugate B—’a, sat-
isfy the commutation relations for bosons in this
limit and can be defined, respectively, as an anni-
hilation operator and a creation operator for bosons
of wave vector w with respect to a vacuum state
I10), defined by B3 110)=0. With the aid of these
new operators, Eq. (37) can be transformed into

Hs=2av(;"ﬁa0) - V(‘F_ﬁ{)+z ﬁ’v.' B; Eu

s V12 mead 1V,l2
+2 % (e +c.c.)=22; -
w ex w ex

(39)

The third term is the Hamiltonian of excitons char-
acterized by these new operators, and the last term
is the sum of the self-energies of the electron and
the hole in this limit. The fourth term is thus the

J
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corresponding exchange interaction and is exactly
that given by Eq. (11), obtained for an electron
moving around a massive hole. The exchange in-
teraction obtained in Ref. 1 has been generally in-
terpreted as being valid only in the static approxi-
mation, whereas we see that, in fact, it has a more
general validity when the hole is fixed.

Next let us compare the exchange interaction giv-
en in Eq. (11) with that of Haken and Schottly. °
Since the HS theory for an exciton in a polarizable
field starts with the band-mass approximation, we
limit ourselves to this approximation in the follow-
ing discussion. The exchange energy in this cal-
culation is given by

y

for an eigenstate ¥ of H given by Eq. (6). If this
¥ is approximated by the product of the vacuum
state of virtual excitons and an eigenstate of iC, is
given by

1Vol? e
(e +c.c.)

ex

E,= <\1/| %) (40)

i€, =p%/2my - */|T -R| , (41)
|k) say, then
0 A AR RS )
E;=(k|2 - (e +c.c.)lk). (42)
w ex

We note that this Eg is the exact exchange energy in
second-order perturbation theory taking

H, - V(|T =R|)+D50% b3 By =50+ 2.3b% by Eoy

in Eq. (1) as the unperturbed Hamiltonian and the
interactions of the electronic polarization field with
the electron and hole as perturbations. Rewriting
the above E{ gives

E°=l<k 2 17,1% @™ EB e c) k>
¢ 2 v Fe T
1/, 2 [ iweF 1 -iwE R 1 iR
+={k 14 e ————— iweR _____ -~ fwer
2< ‘éll‘ W| < Eex+ace_€k e Eex+3ce_€k ¢ k

+c.c.)

_1 2 1 eeeR)
_EZJ,”V“’I [(k‘E (e

ex

- 1

fwer ___ -
+<k (e Eex+:}ce_€k

)

e

-
-iVer

- .=
eiw- (r-R)

-iWe @-R) ea,i'v‘m‘- 1

+e ———
Eex"':}ce €

e-c;-;)

k>] , (43)

where we have used the fact that R is a constant and the relation (E,, +3C, — €,) k) =Ewr| k), €, being the.

eigenenergy of 3C,.
correction, we obtain

1« |V,I2
0 _ —
m-(s|{3 3

Following the method used in Sec.

(e‘“’"""ﬁ)+c.c.) +% )

II to get an expansion for the second-order-energy

Ak

.—_2_142_2___

(ei?l-(;-—ﬁ)
3 E+ 7w/ 2m,

+c.c.)



| >

s |V, 12 (nw
*3 )3,’ (Eop+ 7w I‘é/Zmb)z My

1l s 1V 12 [(ﬁal’))z i @R) _ _-i%e G-R) ﬁw'ﬁ)ﬂ
*2 Z;,’ (E,,‘+7E21,4)z/2mb)3 my ) ¢ e my, *

etw (r-R) +

EFFECT OF ELECTRONIC POLARIZATION... 3603

-
¥ GR) nw.p
my

k> . (44)

According to the HS theory, the effective Hamiltonian for the system of an electron localized around a
massive hole is that for a Wannier exciton with the hole mass equal to infinity, i.e.,

&
1V,
Hys=5 —

0!

where m, and «, are, respectively, the polaron
mass and the coupling constant in the HS theory,
- @, E4 is the self-energy of the electron—a con-
stant—and the last term is the self-energy of the
massive hole. The sum of third and fourth terms
in Eq. (45) is the exchange interaction in the HS
work. This interaction is the same as the sum of
the first two terms in the brackets { } in Eq. (44).
Consequently, the HS exchange interaction excludes
terms such as third, fourth, and higher terms in
Eq. (44). We anticipate from the remarks on the
use of perturbation theory in Sec. II B that these
terms are important for states whose binding en-
ergies are not very small compared to a single
excitation energy (i.e., the exciton energy for the
case of electronic polarizations and the phonon
energy for the case of ionic polarization).

IV. SUMMARY

Within the polaron theory, an exact expression
for the exchange interaction (i.e., the dielectric
screening interaction) between an electron and a
massive hole via a polarizable field was obtained
for arbitrary electron-hole separation. The form

T3 12 _L(eiw(r-R)+cc)+ E

|V l e (PR ) |V, |2

_____2.1&2__ iwe(r .C.) = =y, —
R o (e +C.C.) =0y Eqy Z_v.‘} B,
(45)

—
of this interaction remains unchanged when the
electron mass is also effectively infinite. Com-
parison of the obtained exchange interaction with
that of Haken and Schottky showed that their ex-
change interaction is reliable only for the case of
their interest, i.e., for very large electron-hole
separations.

It has been shown that in the case of ag, =~ ay,
(this is true for a bound lattice polaron in any polar
crystal) the Lamb-shift-type correction due to a
crystalline polarization field is opposite in sign to
that due to the photon field in the hydrogen atom.
This correction is small as compared with optical
absorption and emission energies due to point de-
fects in insulators.

It was also shown in the nonband-mass theory
that the effect of the electronic polarization on the
electronic mass and thereby on the binding energy
is small.
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